A mended hybrid learning algorithm for radial basis function neural networks to improve generalization capability
نویسندگان
چکیده
A two-step learning scheme for radial basis function neural networks, which combines the genetic algorithm (GA) with the hybrid learning algorithm (HLA), is proposed in this paper. It is compared with the methods of the GA, the recursive orthogonal least square algorithm (ROLSA) and another two-step learning scheme for RBF neural networks, which combines the K-means clustering with the HLA (K-means + HLA). Our proposed method has the best generalization performance. 2006 Elsevier Inc. All rights reserved.
منابع مشابه
A Hybrid Online Sequential Extreme Learning Machine with Simplified Hidden Network
In this paper, a novel learning algorithm termed Hybrid Online Sequential Extreme Learning Machine (HOSELM) is proposed. The proposed HOS-ELM algorithm is a fusion of the Online Sequential Extreme Learning Machine (OS-ELM) and the Minimal Resource Allocation Network (MRAN). It is capable of reducing the number of hidden nodes in Single-hidden Layer Feed-forward Neural Networks (SLFNs) with Radi...
متن کاملNovel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection
In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...
متن کاملNeural Network Performance Analysis for Real Time Hand Gesture Tracking Based on Hu Moment and Hybrid Features
This paper presents a comparison study between the multilayer perceptron (MLP) and radial basis function (RBF) neural networks with supervised learning and back propagation algorithm to track hand gestures. Both networks have two output classes which are hand and face. Skin is detected by a regional based algorithm in the image, and then networks are applied on video sequences frame by frame in...
متن کاملOn the use of back propagation and radial basis function neural networks in surface roughness prediction
Various artificial neural networks types are examined and compared for the prediction of surface roughness in manufacturing technology. The aim of the study is to evaluate different kinds of neural networks and observe their performance and applicability on the same problem. More specifically, feed-forward artificial neural networks are trained with three different back propagation algorithms, ...
متن کاملInvestigation of Generalization Ability of a Hybrid Neural Network
In this work, generalization ability of a hybrid neural network algorithm is investigated. This algorithm consists of a combination of Radial Basis Function (RBF) and Multilayer Perceptron (MLP) in one single network using conic section functions. The network architecture using this algorithm is called Conic Section Function Neural Network (CSFNN). Various problems are examined to demonstrate t...
متن کامل